Mechanism Design

There are a set of alternatives
$$A = \{a_1, \ldots, a_n\}$$

(also called "outcomes")
Each agent i has value $\forall_i(a)$ for each alternative A
OR has a fotal order π_i our the alternatives (ordinal
 $\pi_i(a) > \pi_i(b) \Rightarrow agent i prefers alternative a fob
Mechanism takes as input some information abot. \forall_i / π_i
for each agent i, picks an alternative $a^* \in A$
(in mechanisms with money, mech emism may also
take / give payments — ake transfers — from/to agents)$

- Examples () In an auction of a single item w/ n biolders, three are n+1 atternatives: which biddle the item goes to, or nobody. Each bidder i submits vi, it's volue for the alternative when the item is assigned to itself. Mechanism picks an alternetive, takes payment from winning bidder In an election w/n voties & m condidaty, there (1)
 - are n'alternatives (or perhaps mil, including NOTA) Each vote submits it's preferred candidate, fle

about ordinal mechanisms w/o money. Let's falk

m atternatives, n votes, each voter i has a total
order
$$\Pi_i$$
 over the atternatives
 Π_i is also called a "preference"
 $\Pi = (\Pi_i, \Pi_2, ..., \Pi_n)$ is a "preference profile"

Defn: A Social Welfare Fn. F:
$$(T_{1,...,T_n}) \rightarrow \sigma$$

(where σ is a total order over A)
A Social Choire Fn $f:(T_{1,...,T_n}) \rightarrow A$
i.e., an SWF outputs a ranking over alternatives
an SCF outputs a single alternative

Condor cets Paradox

Consider an election of 3 alternatives 0, b, c, 3 voters

$$\pi_{1}(a) \rightarrow \pi_{1}(b) \rightarrow \pi_{1}(c)$$

$$\pi_{1}(b) \rightarrow \pi_{1}(c) \rightarrow \pi_{2}(a)$$

$$\pi_{3}(c) \rightarrow \pi_{3}(a) \rightarrow \pi_{3}(b)$$

Any alternative chocen by an SCF will displease a majority of votes...

We'll talk nove about SCFs, for now let's talk about SWFs.

What are some "good" propertial of SWFs?
Fix an SWF F. Let
$$\sigma = F(\pi_1, ..., \pi_n)$$

(1) theoremity: if $\exists a, b \in A \in F$.
Wi, $\pi_i(a) > \pi_i(b)$, then $\sigma(a) > \sigma(b)$
 $\pi_i: x \neq x \neq a \neq x \neq b$
 $\pi_i: x \neq x \neq a \neq x \neq b$
 $\pi_i: x \neq x \neq x \neq b = r$.
(2) (bad propery) Dictator sing:
 $\exists i = 4\pi$, $F(\pi) = \pi$.
(11) Independence of Invedende A the notices
 π
 $\pi_i: ..., a = b = r$.
 $\pi_i: ..., b = r$.
F(π): $\pi_i = (\pi_1, ..., \pi_n)$, $\pi_i' = (\pi_i', ..., \pi_n')$, $R, b \in A$
 $s.t = \forall i$, $\pi_i(a) > \pi_i(b)$ iff $\pi_i'(a) > \pi_i'(b)$
then $\sigma(a) > \sigma(b)$ iff $\sigma'(a) > \sigma'(b)$
 r independence (150); Any Suf that satisfies
Unanimity f. The must be a dictator ship
What about if $(A = 2)$:
Consider the SWF that chooses the protect preferred by
 $ar (ast [\pi]_2] = apati.$
 $- assing sen to be Unanimous
 $- if even agents orders a, b the same way in The π_i' .$$

Suppose we extend to 1A1 > 3 : choose the order preferred by a pluvality of rotes η (Π a > b > c6: G > b > C | 6': b > C > G

This down not satisfy 11A, since in The RT' lead agent has the same order for a Rb, however in ol o', a l b have different ordes for G 26.

Step 1: 11A + Unanimity
$$\Rightarrow$$
 Pair will Independence
Defn: Pairwill Neutrality
Given $\Pi, \Pi', \text{ if } \exists a, b, c, a \in A \text{ s.t.}$
 $\forall i \quad \Pi_i(a) > \Pi_i(b) \iff \Pi_i'(c) > \Pi_i'(a)$
 $\forall hen \quad e(a) > e(b) \iff e'(c) > e'(d)$
 $\Pi \quad \Pi'$
 $\Pi_i: a \land c \land e \qquad \Pi_i': \land e \land a \land c \land$
 $\Pi_i: b \land c \land e \qquad \Pi_i': e \land a \land c \land$
 $\Pi_i: c \land a \land b \land c \land e \qquad \Pi_i': e \land e \land a \land c \land$
 $\Pi_i: c \land a \land b \land c \land e \qquad \Pi_i': e \land e \land a \land c \land$
 $\Pi_i: c \land a \land b \land c \land e \qquad \Pi_i': e \land b \land a \land d \land c \land$

by PNI:
$$\sigma'(e) > \sigma'(d)$$

Lenu, $\sigma'(c) > \sigma'(d)$
 $\Rightarrow \sigma(c) > \sigma(d)$